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considered are introduced. They serve for a derivation of the governing equations,
which are analyzed in Part 2 of the paper. ( 1999 Academic Press
1. INTRODUCTION

A great amount of literature is devoted to the topic of the reduction of
three-dimensional (3-D) problems for two-dimensional (2-D) ones. A reason for
that is mainly the easier calculations for practically oriented 2-D theories. However,
an application range of the approximate theories is de"ned by a full 3-D theory.

For a general consideration of reduction of 3-D to 2-D theory a reader is referred
to reference [1], where a few hundred works have been reviewed.

As has been pointed out in reference [2], especially for thicker plates shear
deformation and rotary inertia e!ects become signi"cant for the lower #exural
modes. Form the point of view of 2-D plate theory, a higher order analysis is
required to account for these e!ects. A three-dimensional analysis of the free
vibrations of rectangular parallelepipeds was given in reference [3], in which the
Ritz method was used.

The twisted parallelepiped was analyzed in reference [4].
During analysis of the attached mass in#uence on constructions with plates and

shells, a few simple and fundamental methods have been used leading to the
analysis of &&shell-mass'' or &&plate-mass'' models.

In general, it is assumed that masses joined with a plate or a shell are located on
small surfaces, which is typical for technical situations. In a majority of the cases
considered a contact surface is either a square or a rectangle (a shell's curvature is
0022-460X/99/400807#23 $30.00/0 ( 1999 Academic Press
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negligible). It has been shown that models with attached masses always have higher
corresponding frequencies than purely continuous systems [5].

Both the concentrated mass and the force notions are abstractive. In the theory
of plates and shells, the concentrated force notions are interpreted as a sequence of
loads acting on the elementary surfaces approaching zero. A similar method is
applied while solving the problems with attached masses. For a limited case des-
cribing the vibrating system &&plate (shell) - attached sti!mass'', when joint surfaces
approach zero, the di!erential equations characterizing a point of mass - shell
interaction have been derived [6].

One of the most e!ective methods revealing the dynamical characteristic of
plates and shells with added masses is that supported by a generalized function
theory. The concentrated masses e!ects are introduced to the input equations by
using d (Dirac) functions and the mass density is added to the plate density.
Therefore, an inertia e!ect is included [7}9]. For instance, in reference [10]
Lagrange's principle and the generalized function theory have been used to produce
analyzed the di!erential equations.

The generalized function method has been also successfully applied to a wide
class of di!erent shells: shallow with two curvatures, closed cylindrical, spherical
and others [10].

The di!erential equations obtained have been solved by using di!erent
methods. In references [12}16], a method of decomposition for eigenfunctions
of the homogeneous problem has been used. In reference [17] the integral
Fourier transform has been applied. By using the variational Ritz method many
problems connected with the dynamics of shells with discrete masses or orthotropic
and the isotropic closed cylindrical shells with attached masses have been solved
[18].

In practice, especially at a design stage, simple methods are very pro"table
for de"ning the eigenfrequencies. In the literature, it is possible to "nd a description
of approximate method applied to shells with small and large attached masses [19].
In the general case, eigenfrequencies and the corresponding modes of plates and
shells with attached masses have been found by using complex algorithms.

Eigenfrequencies estimation of plates and shells on the basis of non-classical
theories has led to the conclusion that low construction sti!ness has caused an
essential di!erence to the detriment of a classical theory. This indicates the
desirability of developing new theories for the kind of problems in real
constructions, especially composite constructions.

Many examples of the shell and plate theories from a point of view of asymptotic
approaches can also be found in the reference [20].

Because the results presented here are obtained from Kirchho! and Timoshenko
theories, some comments on their nature are included in Appendix A.

2. CURVILINEAR ORTHOGONAL CO-ORDINATES

The following assumptions and hypotheses of the linear theory of an elastic
anisotropic body are stated here, for further analysis:
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1. A shell is shallow and also becomes shallow after deformations (the conditions
of body continuity are not violated). Tension moments are negligible, and the
tension tensor is symmetric.

2. Deformations are small; therefore relations between deformation components
and their derivatives along co-ordinates are linear.

3. Hooke's principle of stress proportional to strain is valid. This means that
relations between tension and deformation components are linear with constant
coe$cients.

4. The initial (possible) deformations are not taken into account.

Consider now an orthotropic shell with the thickness 2h, the mean surface of
which coincides with curvilinear and orthogonal co-ordinates a, b (a, b cover the
main curvature lines of the mean shell surface). c is the normal to a and b and it
describes the distance along the normal from the point (a, b) to the point (a, b, c).

For this co-ordinate system one obtains the following LameH coe$cients:

H
1
"A(1#K

1
c), H

2
"A(1#K

2
c), H

3
"1. (1)

Here A"A (a, b) and B"B(a, b) are the coe$cients of the "rst second power form
of the mean surfaces; K

1
"K

1
(a, b), K

2
"K

2
(a, b) are the main curvatures of

a shell surface along lines a"constant, b"constant.
The following formulae [21] de"ne the LameH coe$cients:
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The notation (
$&&&&"
a, b, c ), (

$&&&&"
x, y, z ) denotes that other formulae are obtained by using

a circular shift of the symbols.
The LameH coe$cients are independent and satisfy the following di!erential

equations:
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Substituting for H
1
, H

2
, H

3
from equations (1) and (2) yields the Gauss formulae for

a shell surface (c"0):
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. (4)

Some formulae necessary for future considerations of the elasticity theory are
given below.

The u
1
, u

2
and u

3
denote a full shell displacement vector projections for the

tangent directions to the co-ordinates a, b, c.
The deformable state of a three-dimensional shallow shell is characterized by

six deformations e
11

,2, e
22

,2, e
23

, connected with the displacement vector
components due to the equations [19]
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The rotary vector x has the following co-ordinates:
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A motion of the shell element dadbdc is governed by the equations [19]

L
La

(H
2
p
11

)!p
22

LH
2

La
#

1
H

1

L
Lb

(H2
1
p
12

)#
1

H
1

L
Lc

(H2
1
H

2
p
13

)".H
1
H

2

L2u
1

Lt2
,

L
Lb

(H
1
p
22

)!p
11

LH
1

Lb
#

1
H

2

L
La

(H2
2
p
21

)#
1

H
2

L
Lc

(H
1
H2

2
p
23

)".H
1
H

2

L2u
2

Lt2
,

L
Lc

(H
1
H

2
p
33

)!p
11

H
2

LH
1

Lc
!p

22
H

1

LH
2

Lc
#

L
La

(H
2
p
13

)#
L
Lb

(H
1
p
23

)".H
1
H

2

L2u
3

Lt2
,

(7)

where p
11

, p
22

,2, p
23

are the tension co-ordinates related to the deformation
co-ordinates e

11
, e

22
,2, e

23
by using the general Hooke's principle.

Assume that at every point of a body they meet three perpendicular planes of an
elastic symmetry, upon assuming that at every point of an anisotropic body the
planes are perpendicular to the corresponding co-ordinates a, b, c the general
Hooke's principle equations have the form
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In that case the number of independent elasticity constant coe$cients a
ijkl

is equal
to nine and they are obtained from the relations
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Because the above equations are symmetric one has
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. (10)

One de"nes a body as an orthotropic one if at each point three mutually
perpendicular planes of an elastic symmetry meet.

One de"nes a plane as an isotropic one when all directions of its points are
equivalent because of the elasticity properties. If the isotropic plane is attached to
each body's point, then the material is de"ned as a transversely isotropic one, and
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the number of independent constant elasticity coe$cients a
ijkl

is reduced to the
following ones:
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Here E denotes Young's modulus for the isotropic plane directions and E@ is the
Young's modulus for the perpendicular to the isotropic plane directions; l is
Poisson's coe$cient characterizing the shortening in the isotropic plane due to the
extension in the normal direction of the same plane; l@ is an analogical Poisson
coe$cient in the direction normal to that plane, G@ is the shear modulus for planes
normal to the isotropic plane; G"E/2(1#l) is the shear modulus for the planes
parallel to the isotropic plane.

Solving the equations of the generalized Hooke's law according to the tension
components p
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, p
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,2, p
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yields the inverse formulas
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where the sti!ness coe$cients have the forms
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For transversely isotropic materials the above coe$cients are
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Following a typical approach leading to the governing equations formations
[19}21], one needs to apply Hamilton's principle expressed by volume integrals.

3. FUNDAMENTAL RELATIONS AND HYPOTHESES

Here the fundamental relationships further utilized during the dynamic model
&&shallow shell - attached mass'' creation will be given. The necessary relations are
obtained from the general equations of elasticity theory by taking into account
many additional conditions.

Consider a shallow orthotropic shell which has a projected rectangular shape
with sides a and b. Suppose that x and y are the Cartesian co-ordinates of the shell
surface; then the second power of the linear element in the plane x0y given by the
relation

ds2"dx2#dy2, (15)

which de"nes the coe$cients of the "rst second power form

A"B"1. (16)

For the shallow shell considered with the curvilinear orthogonal co-ordinate
system a, b, c one has

ds2"da2#db2, (17)

which means that A+1, B+1.
Suppose that a mean surface is de"ned by z"f (x, y). Thus, taking a mesh

de"ned by x"constant, y"constant, from equations (16) one obtains

A"S1#A
Lf
LxB

2
, B"S1#A

Lf
LyB

2
. (18)

A shell will be shallow enough [23] if at each point of the mean surface one has

(Lf/Lx)2@1, (Lf/Ly)2@1. (19)

Therefore, in all relations of the previous section one can take a"x, b"y, and
the "rst second power form coe$cients are equal to one. From di!erential
geometry it is known that for the shallow shells one then has

k
1
"!L2f/Lx2, k

2
"!L2f/Ly2, k

12
"L2f/LxLy, (20)

where k
12
"0 if the co-ordinate axes coincide with the main curvature lines. In the

latter case one has

k
1
"!L2f/Lx2, k

2
"!L2f/Ly2, k

12
"0. (21)
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The following additional assumptions are also made.

(a) In the "rst two equations the terms k
1
p
11

and k
2
p
12

are negligible.
(b) In relations between shear deformations and displacements the terms with

curvature coe$cients are negligible.

Finally, one obtains the following relationships and equations for a shallow shell

Motion equations:

Lp
11

Lx
#

Lp
12

Ly
#

Lp
13

Lz
".

L2u
Lt2

, (
$&&"
1, 2 ), (

$&&"
u, v ),
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13

Lx
#

Lp
23
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#
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33

Lz
!k

1
p
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!k

2
p
22
".

L2w
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. (22)

Geometrical relationships:

e
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"

Lu
Lx

#k
1
w, (

$&&"
1, 2 ), (

$&&"
x, y ),

e
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"

Lu
Ly

#
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$&&&&"
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$&&&&"
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33
"
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. (23)

Rotary vector components:

u
1
"

1
2 A

Lw
Ly

#

Lv
LzB, (1, 2, 3), (x, y, z). (24)

The shell tensions are de"ned by relations (12). For k
1
"k

2
"0, equations

(22)}(24) govern the plates' behaviour.
Suppose that a shallow moderately thick shell is loaded by an arbitrary number

of the attached masses, situated on the rectangular elements DS (i"1,2, N) on the
shell's top surface, which are bounded by two line segment pairs x"x

i
!cJ i

1
,

x"x
1
!cJJ i

1
and y"y

i
!cJ i

2
, y"y

i
!cJJ i

2
, where x

i
, y

i
are the "rst two co-ordinates

of the attached mass centre Oi (x
i
, y

i
, z

i
) (see Figure 1). Denoting qi

1
"cJJ i

1
/cJ i

1
,

qi
2
"cJJ i

2
/cJ i

2
(where qi

1
, qi

2
are characterized by a degree of deviation from its

geometrical centre), for a homogeneous material one has cJJ i
1
"cJ i

1
, cJJ i

2
"cJ i

2
, because

of the symmetry, which means that qi
1
"qi

2
"1. Denoting the ith added mass

height by h
i

does not introduce any additional constraints. A contact surface
dimension cJ i

1
(1#qi

1
)cJ i

2
(1#qi

2
) is small in comparison with the shell surface.

4. VARIATIONAL EQUATIONS

The variational Hamilton's principle will be used in a derivation of the
di!erential equations governing a shell's dynamics as well as the boundary and
initial conditions.



Figure 1. A moderately thick shell loaded by an arbitrary number of the added masses
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Consider a motion process between two time points t
0

and t. One compares the
di!erent trajectories between these points. &&Real'' trajectories are de"ned by the
condition

P
t

t0

(dK#dA!dP) dt"0. (25)

Here dK denotes the kinetic energy variation, dA denotes the external forces work
variation and dP is the potential energy deformation variation.

In the next considerations the focus is on the eigenfrequencies of either &&shell -
mass'' or &&plate - mass'' system. Free vibration type of thin-walled structures
characterizes its internal properties occurring as a result of external load action.
Because of that observation and assuming a lack of external forces, one can take
dA"0. Taking into account the above assumptions one obtains the following
Hamilton's principle:

P
t

t0

d(K!P) dt"0. (26)

Here ¸"K!P is th Lagrange function. This function in the case of &&shell - mass''
vibrating system, possesses the form

¸"

1
2 PPP

V
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2
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2

D dxdydz



!

1
2 PPP

V

(p
11
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e
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e
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)dx dydz (27)
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< denotes the total volume occupied by the shell and the attached masses.
An original discrete-continuous construction, consisting of a moderately thick
shell with constant thickness and the attached elements, is &&changed'' to one
continuous model: a certain shell with changeable thickness. The ¸ function
is given by

¸"

1
2 P

z*

~h
P

a

0
P

b

0

.CA
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2
#A

Lv
LtB

2
#A

Lw
LtB

2
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(28)

where

z*"h#
N
+
i/1

h
i
H*(x, x

i
, cJ i

1
, cJ J i

1
) )H**(y, y

i
, cJ i

2
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2
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i
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1
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1
)"H

1
[x!(x

i
!cJ i

1
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2
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i
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1
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i
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2
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2
)"H

1
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i
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2
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2
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i
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2
)], (30)

with H
1
, H

2
being the characteristic functions with the properties

H
1
"G
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x(x
i
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1
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i
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1
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2
"G
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x(x
i
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1
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i
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1
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Integrals occurring in equation (28) can be transformed to the forms

¸
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P
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As an example consider the second integral of equation (28) in the form

1
2P

z*

~h
P

a

0
P

b

0

(2)dx dydz"
1
2 P

h

~h
P

a

0
P

b

0

(2)dxdydz#
1
2 P

z*

~h
P

a

0
P

b

0

(2)dxdydz,

(34)

where (2)"(p
11

e
11
#p

22
e
22
#p

33
e
33
#p

12
e
12
#p

13
e
13
#p

23
e
23

).
The second term of equation (34) on the basis of equation (29) and upon using

characteristic function properties, is expressed by

1
2 P

z*

h
P

a

0
P

b

0

(2)dx dydz"
1
2

N
+
i/1
P

h`hi

~h
P

a

0
P

b

0

(2)H*H**dxdy dz. (35)

From equations (35) and (34) one obtains equations (32) and (33).
It must be emphasized that during the derivation of relationships (32) and (33)

additional conditions are introduced because of the system &&shallow shell - mass'',
which proves that the considerations here are general. In addition, di!erent shells
and plates with added masses classi"ed on the basis of di!erent deformations could
be obtained in the frame of the theory introduced here. And "nally, this method can
serve as a tool for the investigation of newly developed models and for accuracy
investigations of existing ones.

To continue the investigations further and to build a &&shell -mass'' model, it is
necessary to introduce certain physical and geometrical simplications. As the
attached element one may take an absolutely sti! mass concentrated on a small
surface. One is going to get high-accuracy results by taking additional forced terms
caused by attached masses interaction. Up to now, this has been regarded as rather
negligible by other researchers. Of course, this direction of investigations is not the
only possibility since other proposed models are also available.

The assumptions about the added mass joints, which lead to the omitting of the
masses internal deformation, allow for cancellation of the second integral in
equation (33). It characterizes deformation energy of the attached masses. We are
also going to transform the second term of equation (32), which characterizes the
kinetic energy of the attached masses. First, we investigate a problem dealing with
velocity distributions of the points inside a small volume covered by the attached
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mass in relation to a certain point Oi (x
i
, y

i
, z

i
) being the mass centre. It is assumed

that the velocity "eld is continuous and has "rst order derivatives.
Suppose that the point Oi (x

i
, y

i
, z

i
) velocity is equal to m1 i

0
, and the velocity of the

point of the added mass is equal to m1 i
1i

(x, y, z). One can develop m1 i
1

in
a neighbourhood of Oi taking account only of linear terms of .

i
, where .

i
"DuN !uN

i
D,

uN
i
"u (x

i
, y

i
, z

i
) (curvature of the joint surface is negligible):

mi
1x
"mi

0x
#

Lmi
1x

Lx
(x!x

i
)#

Lmi
1x

Ly
(y!y

i
)#

Lmi
1x

Lz
(z!z

i
),

$&&&&"
(1, 2, 3),

i"1,2, N (36)

Thus, the following relationships are obtained from equation (36) for
a displacement of an arbitrarily taken added mass point:

ui
1
"ui

0
#

Lmi
1x

Lx
(x!x

i
)Dt#

Lmi
1x

Ly
(y!y

i
)Dt#

Lmi
1x

Lz
(z!z

i
)Dt,

(
$&&&&"
1, 2, 3 ), i"1,2, N (37)

De"ning an arbitrarily taken point velocity by the mass centre velocity Oi from
equation (36) one obtains

mi
1x
"mi

0x
#

Lmi
1x

Lx
(x!x

i
)#

1
2A

Lmi
1x

Ly
#

Lmi
1y

Lx B(y!y
i
)#

1
2A

Lmi
1x

Ly
!

Lmi
1y

Lx B (y!y
i
)

#

1
2A

Lmi
1x

Lz
!

Lmi
1z

Lx B (z!z
i
)#

1
2A

Lmi
1x

Lz
!

Lmi
1z

Lx B (z!z
i
), (

$&&&&"
1, 2, 3 ),

i"1,2, N. (38)

In the above relationships both symmetric and antisymmetric tensors are used,
which are de"ned in the three-dimensional vector by

u5 i
1
"

1
2 A

Lmi
1z

Ly
!

Lmi
1y

Lz B, (
$&&&&"
1, 2, 3 ). (39)

Introducing the following notation

m) i
x
"

Lmi
1x

Lx
(x!x

i
)#

1
2 A

Lmi
1x

Ly
#

Lmi
1y

Lx B (y!y
i
)

#

1
2 A

Lmi
1x

Lz
#

Lmi
1z

Lx B (z!z
i
), (

$&&&&"
1, 2, 3 ), (40)
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and taking into account equations (39) and (40) in equation (38) one obtains

mi
1x
"mi

0x
#m) i

x
#u5 i

2
(z!z

i
)!u5 i

3
(y!y

i
), (

$&&&&"
1, 2, 3 ), (41)

By using the symbolic notation

x"u
1
i#u

2
j#u

3
k"

1
2 K

i j k

L
Lx

L
Ly

L
Lz

mi
1x

mi
1y

mi
1z
K. (42)

equation (41) can be expressed in the form

mi
1x
"mi

0x
#mi

x
#[x](u!u

i
)]

x
, (

$&&&&"
1, 2, 3 ). (43)

To conclude, velocities of the attached mass points can be de"ned in the form of
a three-component sum. The "rst one ni

0
does not depend on the co-ordinates x, y,

z and the translatory motion velocity of a whole body is equal to the mass centre
velocity. The second component is related to the relative extension and shear
deformation velocities between the element and the added mass. If there are no
deformations inside the added mass one has m) i

x
"m) i

y
"m) i

z
"0 (velocity deformation

tensor components are equal to zero).
The third component in the relationship (43) de"nes the components of the

vector xi describing an instantaneous angular velocity vector of the body treated as
absolutely sti!. Taking into account the latter observation relationships (43) yields
the form

mi
1x
"mi

0x
#[xi](u!u

i
)]

x
, (

$&&&&"
1, 2, 3 ), (44)

Now, taking into account (44), one obtains the kinetic energy

¸A"
1
2

N
+
i/1
P

h`hi

~h
P

a

0
P

b

0

.CA
Lu
LtB

2
#A

Lv
LtB

2
#A

Lw
LtB

2

DH*H**dx dydz

"

1
2

N
+
i/1
P

h`hi

~h
P

a

0
P

b

0

.M(mi
0x

)2#(mi
0y

)2#(mi
0z

)2#(u5 i
2
)2[(z!z

i
)2

#(x!x
i
)2]#(u5 i

1
)2[(z!z

i
)2#(y!y

i
)2]#(u5 i

3
)2[(y!y

i
)2

#(x!x
i
)2]!2u5 i

2
u5 i

3
(z!z

i
) (y!y

i
)!2u5 i

3
u5 i

1
(x!x

i
) (y!y

i
)

!2u5 i
1
u5 i

2
(y!y

i
)(x!x

i
)NH*H**dxdydz. (45)

The ith added mass dimension with the co-ordinates x
i
, y

i
, z

i
is given by

cJ i
1
(1#qi

1
)cJ i

2
(1#qi

2
). Multiplying and dividing equation (45) by that quantity and
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remembering that d<"cJ i
1
(1#qi

1
)cJ i

2
(1#qi

2
) dz, after integration of equation (45)

one gets

¸A
1
"

1
2

N
+
i/1
P

a

0
P

b

0

MMI i[(mi
0x

)2#(mi
0y

)2#(mi
0z

)2]#JI i
xx

(u5 i
2
)2#JI i

yy
(u5 i

2
)2

#JI i
zz

(u5 i
3
)2!2JI i

xy
u5 i

1
u5 i

2
!2JI i

xz
u5 i

1
u5 i

3
!2JI 1

yx
u5 i

2
u5 i

3
NH*H**dxdy. (46)

Here MI i, JI i
xx

, JI i
yy

, JI i
zz

, JI i
xy

, JI i
yz

, JI i
xz

, denote masses and mass inertia moments of the
attached mass related to a unit joint contact surface uniquely distributed on it.

In a limited case, when the concentrated masses are located on a shell one can use
d functions. This means that in equation (46) one can take cJ i

1
P0, cJ i

2
P0, and in

addition obtain

lim
c8 i1?0

H*(x, x
i
, cJ i

1
, cJJ i

1
)

cJ i
1
(1#qi

1
)

"d (x!x
i
), lim

c8 i2?0

H** (y, y
i
, cJ i

2
, cJJ i

2
)

cJ i
2
(1#qi

2
)

"d (y!y
i
). (47)

Then, ¸A
1

is transformed to the form

¸A
1
"

1
2

N
+
i/1
P

a

0
P

b

0

MMi[(mi
0x

)2#(mi
0y

)2#(mi
0z

)2]#J i
xx

(u5 i
1
)2

#J i
yy

(u5 i
2
)2#J i

zz
(u5 i

3
)2!2J i

xy
u5 i

1
u5 i

2
!2J i

xz
u5 i

1
u5 i

3

!2J1
yx

u5 i
2
u5 i

3
Nd(x!x

i
)d(y!y

i
)dx dy, (48)

where ui
J

are de"ned by equation (39).
Substituting equation (46) to equation (32) and equation (33) into equation (28)

yields the Lagrange function of the &&shallow shell - concentrated mass'' system:

¸"

1
2P

h

~h
P

a

0
P

b

0

.CA
Lu
LtB

2
#A

Lv
LtB

2
#A

Lw
Lt B

2

Ddxdy dz

#

1
2

N
+
i/1
P

a

0
P

b

0

MMi[(mi
0x

)2#(mi
0y

)2#(mi
0z

)2]#J i
xx

(u5 i
1
)2

#J i
yy

(u5 i
2
)2#J i

zz
(u5 i

3
)2!2J i

xy
u5 i

1
u5 i

2
!2J i

xz
u5 i

1
u5 i

3

!2J1
yx

u5 i
2
u5 i

3
Nd (x!x

i
)d (y!y

i
)dx dy!

1
2 P

h

~h
P

a

0
P

b

0

(p
11

e
11

#p
22

e
22
#p

33
e
33
#p

12
e
12
#p

13
e
13
#p

23
c
23

)dx dydz. (49)

A variational principle (25) related to equation (49) should be formulated by
using the following additional conditions: relationships of the generalized Hooke's
law (12) and the geometrical relationships (33). In addition, one needs expressions
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for the mass centre velocity vector components ni
0

and the angular velocity vector
components xi.

To conclude, one has obtained an important relationship (49) fully described by
energetic characteristics of the investigated system in the three-dimensional space
of displacements.

Next, one can derive motion equations of a shallow shell with attached
concentrated masses.

First one de"nes potential energy variations dP due to the shell's deformation.
Taking into account the relationships

dA
Lu
LxB"

L (du)
Lx

and the integration by parts rule one gets

PPP
V
C
L (du)
Lx

p
11
#A

L(du)
Ly

#

L (dv)
Lx Bp

12
#A

L (du)
Lz

#

L(dw)
Lx Bp

13
#2Ddx dydz

"PP
s

[(p
11

l#p
12

m#p
13

n)du#2]dxdy

!PPP
V
CA

Lp
11

Lx
#

Lp
22

Ly
#

Lp
13

Lz Bdu#2Ddx dy dz.

Grouping the terms in du, dv and dw one obtains

dP"!P
h

~h
P

a

0
P

b

0
CA

Lp
11

Lx
#

Lp
12

Ly
#

Lp
13

Lz Bdu#A
Lp

12
Lx

#
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Ly
#

Lp
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Lz Bdv

#A
Lp

13
Lx

#

Lp
23

Ly
#

Lp
33

Lz
!k

1
p
11
!k

2
p
22BdwD#P

h

~h
P

b

0

[p
11

du

#p
12

dv#p
13

dw] Da
0
dydz#P

h

~h
P

a

0

[p
22

dv#p
12

du#p
23

dw] Db
0
dx dz

#P
a

0
P

b

0

[p
33

dw#p
13

du#p
23

dv] Dh
~h

dxdy. (50)

Consider a variation of the kinetic energy of the system &&shallow shell - mass''.
From equations (45) and (32) one obtains the following value of the kinetic energy:

K"

1
2 P

h

~h
P

a

0
P

b

0

.CA
Lu
LtB

2
#A

Lv
LtB

2
#A

Lw
LtB

2

Ddx dydz
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#

N
+
i/1
P

a

0
P

b

0

MMi[(mi
0x

)2#(mi
0y

)2#(mi
0z

)2]#J i
xx

(u5 i
1
)2

#J i
yy

(u5 i
2
)2#J i

zz
(u5 i

3
)2!2J i

xy
u5 i

1
u5 i

2
!2J i

xz
u5 i

1
u5 i

3

!2J1
yx

u5 i
2
u5 i

3
Nd (x!x

i
)d (y!y

i
)dx dy. (51)

One can now characterize the values mi
0x

, mi
0y

, mi
0z

, u5 i
1
, u5 i

2
, u5 i

3
. The following law of

the displacements change because the ith mass thickness is assumed:

u
i
"uh!(z

i
!h)

Lwh

Lx
, v

i
"vh!(z

i
!h)

Lwh

Ly
, w

i
"wh, (52)

where uh, vh, wh are the displacements of a top shell surface in contact with the ith
attached mass. Taking into account equation (39) one obtains the relationships

mi
0x
"

Luh

Lt
!(z

i
!h)

L2wh

LxLt
,

mi
0y
"

Lyh

Lt
!(z

i
!h)

L2wh

LyLt
,

mi
0z
"

Lwh

Lt
, u5 i

1
"

L2wh

LyLt
,

u5 i
2
"

L2wh

LxLt
, u5 i

3
"

1
2 C

L2vh
LxLt

!

L2uh

LyLtD. (53)

Coming back to integral of the kinetic energy variation of a shell with attached
masses described by equations (51) and taking into account equations (53) one gets

P
t

t0

dKdt"P
t

t0
A

N
+
i/1
P

a

0
P

b

0
GMiC
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#(z
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i
!h)
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!
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i
!h)

L2 (dw)
LxLt

#

Lv
Lt

L(dv)
Lt

#(z
i
!h)2

L2w
LyLt

]
L2(dw)
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!

L (dw)
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(z
i
!h)

L2w
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!

L2v
Lt2

(z
i
!h)
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#
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L (dw)
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#

1
4
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!

L2u
LyLtDA

L2 (dv)
LxLt

!
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!
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L2w
LyLtC
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!
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LxLtC

L2(dv)
LxLt

!
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i
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i
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#P
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0
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b
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Lt

#

Lv
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#

Lw
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Lt DK

z/h
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(54)

After equation (54) components transformations using an integral by parts rule and
substituting the obtained expression together with equation (50) into equation (26)
one has
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)
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)

#
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i
)A

L3v
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z/h

!p
33

dwD
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h
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a

0
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b

0
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du#
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dv#
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dwBD
t

t/0

dx dydz (55)

5. CONCLUSIONS

The assumptions and hypotheses of the three-dimensional theory of orthotropic
shallow shell with attached masses have been formulated. Then the variational
Hamilton's principle has been used for a derivation of the di!erential equations
governing a shell's dynamics. Special attention has been used for a derivation of the
di!erential equations governing a shell's dynamics. Special attention has been paid
to providing a proper model of the concentrated sti! mass additives (the masses
and mass inertial moments related to a unit joint contact surface have been taken in
account). Finally, the variational equations are derived from which the motion
equations, can be derived. These will be obtained and analyzed further in Part 2 of
the paper.
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APPENDIX A

Because some kinematic models of continuous systems will be used further, their
fundamental assumptions are brie#y discussed.

A.1. BEAMS (BERNOULLI}EULER HYPOTHESIS)

The x axis has the same direction as the beam axis, whereas the y and x-axis
correspond to the main cross-sectional axes ( a right-hand rectangular co-ordinate
system is applied). Because, according to the beam de"nition, a longitudinal beam
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diameter is considerably larger than its two other diameters, the following
assumptions are applied.

First, the following stress components p
y
, p

z
and q

yz
are negligible with

p
y
"p

z
"q

yz
"0. (A1)

Second, the cross-sections perpendicular to the beam axis before bending become
#at and perpendicular to a new bended axes and they are not deformable in their
plane:

U"U
0
#z(n!i

3
), (A2)

where i
1
, i

2
and i

3
are the unit vectors in the x, y, z directions, respectively; n is the

unit normal to the deformable beam axis, U
0
"Ui

1
#Wi

3
, where ;(x), = (x).

If only the linear theory is used, then equation (A2) has the form

v";!z=@, <"0, w"=.

Next, one can formulate a theory taking into account the deformation associated
with transverse shear.

The displacement vector U can be developed into a series in the neighbourhood
of z"0:

U(x, y, z)"U(x, y, 0)#zA
LU
Lz B

z/0

#

1
2!

z2A
L2U
Lz2 B

z/0

#2. (A3)

This means that a simple expression including transverse shear deformation has
the form

U"U
0
#zU

1
, (A4)

where U
1

is de"ned as

U
1
";

1
i
1
#=

1
i
3

(A5)

and ;
1
,=

1
depend on x. These are four degrees of freedom: ;,=, ;

1
and=

2
. If

again equation (A1) and the known stress and deformation are used, then the
equation

2e
zz
";2

1
#(1#=

1
)2!1"0 (A6)

can be used as an additional geometrical constraint, decreasing the number of
degrees of freedom to three. Both equations (A4) and (A6) imply that the transversal
cross-sections perpendicular to the non-deformable axis are #at and they are not
deformable in their plane, although they are perpendicualr to the deformable axis.
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For small displacements (linearization de"ned by equation (A6)) one has

=
1
"0, (A7)

v";#z;
1
, <"0, w"=, (A8)

which leads to the following non-zero deformation components

e
x
";@#z;

1
, c

xz
"=@#;

1
. (A9)

The Bernoulli}Euler hypothesis leads to the following constraint: ;
1
"=@.

The hypotheses described can be generalized for models of plates and shells.

A.2. PLATES

The co-ordinates of the z- and y-axis lie in one plane, the z-axis overlaps the
normal to this plane, and x, y, z create a right-hand co-ordinate system (in our case
the left-hand co-ordinates are used).

The following Kirchho! hypotheses are used.

1. A transversal normal stress is negligible in comparison with other stress
components:

p
z
"0. (A10)

2. A linear plate element, initially perpendicular to the average surface, becomes
perpendicular to the deformable average surface and does not undergo any
stretching. Relation (A2) is still valid, where ; (x, y), v(x, y), = (x, y). There are
three-degrees-of-freedom (;, v,=). For small displacements (see equations (A2))
one has

v";!z=@
x
, <"v!z=@

y
, w"=, (A11)

whereas the deformations are

e
z
"c

xz
"c

yz
"0. (A12)

Thus, the theory taking into account shear transverse deformation is simply
a generalization of the shear transversal deformation beam theory. Equations (A3)
and (A4) are valid, but U

1
is de"ned as

U
1
";

1
i
1
#v

1
i
2
#=

1
i
3
. (A13)

where ;
1
(x, y), v

1
(x, y), =

1
(x, y). Now, one has six-degrees of freedom

(;, v,=,;
1
, v

1
,=

1
). Equation (A8) is transformed into the form

2e
zz
";2

1
#v2

1
#(1#=

1
)2!1"0, (A14)
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which reduces the number of degrees of freedom to "ve. This means that linear
elements perpendicular to the non-deformable average surface become straight
and non-deformable, but they are not perpendicualr to the deformable average
surface.

For small displacements, equation (A14) is linearized,=
1
"0, and

v";#z;
1
, <"v#z<

1
, w"=

1
. (A15)

A.3. SHELLS

Now, a system of the curvilinear co-ordinates a and b located on the average
surface S

m
overlapping the main curvature lines is applied.

One has the relation

i(0)"i(0)
0

(a, b)#f
1
n(0)(a, b), (A16)

where f
1

is a distance between a point on the shell and the average surface, i(0) is the
radius vector of this point, and n(0) is the unit vector perpendicular to the average
surface S

m
. The hypothesis takes into account the e!ect of shear transversal

deformation for shells:

pf"0, U"U
0
#fU

1
. (A17, A18)

The following geometric constraint is applied:

eff";2
1
#v2

1
#(1#=

1
)2!1"0. (A19)

In a case of small deformation (linearization de"ned by equation (A19)), one
obtains

=
1
"0, (A20)

v";#f;
1
, <"v#fv

1
, w"=, (A21)

which generalizes the results of equation (A15).
In the frame of the Kirchho!}Love hypothesis an arbitrary point of the average

surface with the co-ordinates (a, b, 0) before i(0)
0

and after (i
0
) deformation is

governed by the equations

i
0
"i(0)

0
#U

0
, i"i

0
#fn, (A22, A23)

where n is the unit vector normal to the deformable average surface. For the shells
where curvilinear co-ordinate systems overlap the co-ordinates on the plane x, y, all
relations discussed for plates are valid. The theories discussed, taking into account
transversal shear deformation e!ects, are related in our paper to the theories of
Timoshenko type, since this famous work was published in 1921.
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The generalized Timoshenko models are related to the case where the initial
linear elements are perpendicular to the non-deformable average surface and
become curvilinear after deformation and are not perpendicular to the deformable
average surface. In this work the generalized Timoshenko model is de"ned by
equation (A3), where the next series terms are taken.
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